Tolerance Stack-Up Analysis

Presented By Gene Cogorno

TECHNICAL TRAINING CONSULTANTS

Rev. 1/2010

Course Outline

- 1. The Basics
 - **a.** Identify factors pertinent to stack-up analysis
 - **b.** Designate positive and negative routes
 - **c.** Position each part for a worst-case analysis
 - **d.** Calculate mean dimensions & equal bilateral tolerances
 - e. Calculate virtual & resultant condition boundaries
 - **f.** Calculate the tolerance of fixed and floating fasteners

2. Box Assembly

- **a.** Apply basic stack-up analysis to a box assembly
- **b.** Draw loop analysis diagram for the box assembly
- **c.** Designate positive and negative routes
- **d.** Calculate mean dimensions & equal bilateral tolerances
- e. Calculate MAX and MIN GAP

3. Tolerance Stack-Up Analysis for Features of Size

- **a.** Perform a loop analysis
- **b.** Determine the start and end points
- **c.** Graph values on a loop diagram

- 4. Tolerance Stack-Up Analysis for Assemblies with Plus and Minus Tolerancing
 - **a.** Calculate airspaces and interferences
 - **b.** Alternative method of Analysis
- 5. Tolerance Stack-Up Analysis for a Floating Fastener Assembly
 - **a.** Calculate resultant and virtual conditions
 - **b.** Convert all dimensions to equal bilateral tolerances
 - c. Mix widths and diameters in a numbers chart
 - **d.** Graph the numbers into a tolerance stack-up diagram
 - e. Determine all unknown gaps in a five-part assembly

- 6. Tolerance Stack-Up Analysis for a Fixed Fastener Assembly
 - **a.** Calculate overall housing requirements
 - **b.** Calculate MIN and MAX GAPS within the assembly
- 7. Tolerance Stack-Up Analysis for a Five-Part Assembly
 - **a.** Perform a tolerance analysis of a five-part rotating assembly with a variety of geometric tolerances.
 - **b.** Practice simplifying a complex situation.
 - **c.** Learn to calculate part-to-part analysis from two parts to an infinite number of parts.
 - **d.** Determine assembly housing requirements.
 - e. Calculate radial clearance and interference.

8. The Theory of Statistical Probability

- **a.** Convert an arithmetical to a statistical tolerance
- **b.** Use the Root Sum Squares (RSS) formula
- **c.** Determine the tolerance statistically likely to be consumed
- **d.** Compare statistical to arithmetical tolerance
- e. Calculate the percentage each tolerance may be increased
- **f.** Use a correction factor as a multiplier
- g. Reintegrate the Statistical Tolerance into the assembly

Chapter 1

The Basics

Lesson Objectives

You will be able to:

- Identify factors pertinent to stack-up analysis
- **Designate** positive and negative routes
- **Position** each part for a worst-case analysis
- Calculate mean dimensions and equal bilateral tolerances
- Calculate virtual and resultant condition boundaries
- Calculate the tolerance of fixed and floating fasteners

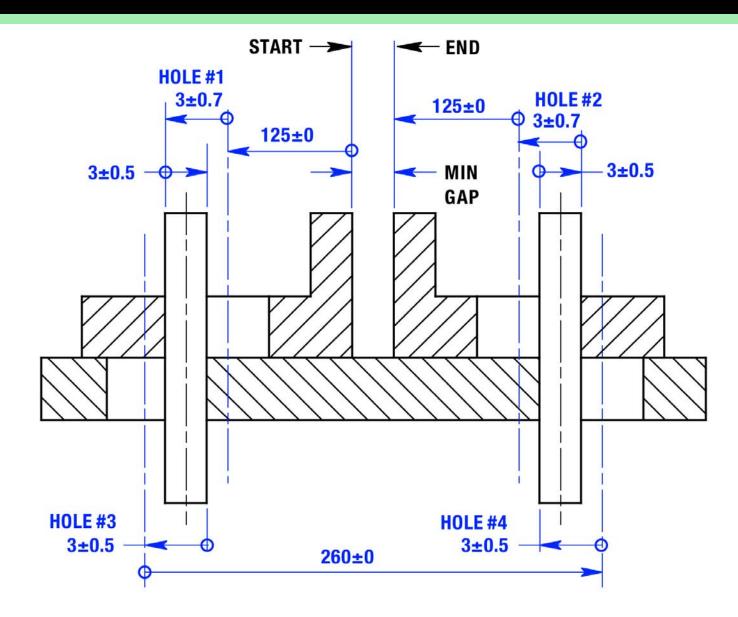
TOLERANCE STACK-UP ANALYSIS Main Rules

- Start at the bottom and work up or Start at the left and work to the right.
- 2) Stay on one part until it is exhausted.
- 3) Left and down are negative; right and up are positive.
- 4) Always take the shortest rout.

Step 1 Identify what requirement is under test.

Step 2 Identify all dimensions that contribute to the gap.

Step 3


Assign each dimension a positive or negative value:

- Left is negative
- Down is negative

Right is positive

Up is positive

TIC TECHNICAL TRAINING CONSULTANTS

Step 4

Only one set of mating features creates the worstcase gap.

Step 5

The analyst must deduce which geometric tolerance, location or orientation if either, contributes to the gap.

Step 6 If your assumptions are wrong, your answer is wrong.

Finding the mean:

Calculate the sum and the difference between the MMC and LMC and divide each by two

- *Maximum Material Condition (MMC)*: The maximum material condition of a feature of size is the maximum amount of material within the stated limits of size. For example, the maximum shaft diameter or the minimum hole diameter.
- *Least Material Condition (LMC)*: The least material condition of a feature of size is the least amount of material within the stated limits of size. For example, the minimum shaft diameter or the maximum hole diameter.

Example – Limit dimension Ø20 – 22

MMC/LMC	22	22
LMC/MMC	+ 20	- 20
	2) 42	2) 2
	21	1

Equal Bilateral Tolerance (\pm) of part 21 ± 1

TECHNICAL TRAINING CONSULTANTS

Example – Unequal bilateral tolerance

MMC/LMC	51	51
LMC/MMC	+ 47	- 47
	2) 98	2) 4
	49	2

Equal Bilateral Tolerance (\pm) of part 49 ± 2

TECHNICAL TRAINING CONSULTANTS

Boundaries

Virtual Condition

The virtual condition of a feature specified at MMC is a constant boundary generated by the collective effects of the MMC limit of size of a feature and the specified geometric tolerance.

Virtual condition calculations:

Internal Features (Hole)

MMCPlusGeo. Tol. @ MMCEqualsVirtual Condition

MMC <u>Minus</u> Geo. Tol. @ MM Equals Virtual Condition

TECHNICAL TRAINING CONSULTANTS

• Resultant Condition

The resultant condition of a feature specified at MMC is a variable boundary generated by the collective effects of the LMC limit of size of a feature, the specified geometric tolerance, and any applicable bonus tolerance.

Extreme resultant condition calculations:

Externa	al Features (Pin)	<u>Intern</u>	al Features (Hole)
	LMC		LMC
Minus	Geo. Tol. @ MMC	Plus	Geo. Tol. @ MMC
<u>Minus</u>	Bonus Tolerance	<u>Plus</u>	Bonus Tolerance
Equals	Result. Condition	Equals	Result. Condition

Worst Case Boundaries of a Hole

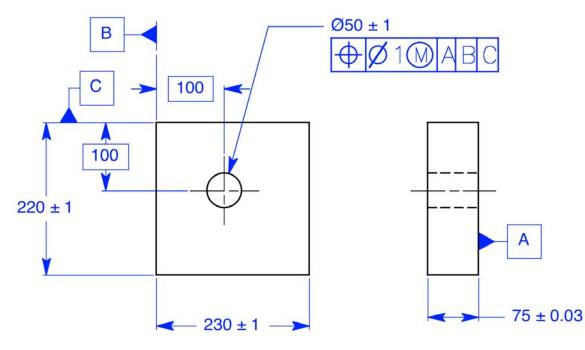


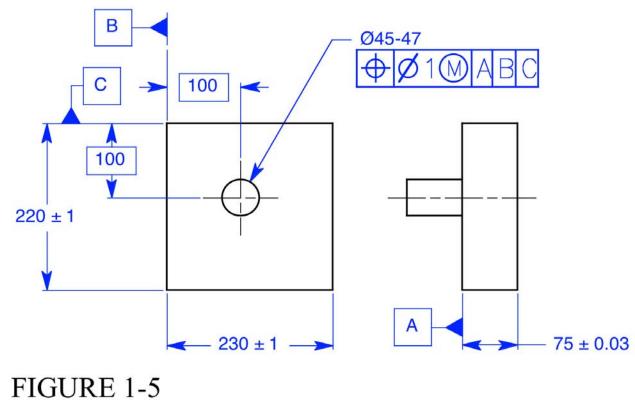
FIGURE 1-1 Virtual Condition VC = MMC - GTVC = 49 - 1 = 48

Resultant Condition

RC = LMC + GT + Bonus

$$RC = 51 + 1 + 2 = 54$$

TECHNICAL TRAINING CONSULTANTS


Virtual and Resultant Conditions, Hole

VC/RC	54	54
RC/VC	+ 48	- 48
	2)102	2) 6
	51	3

Equal BilateralTolerance (\pm) of part 51 ± 3

TECHNICAL TRAINING CONSULTANTS

Worst Case Boundaries of a Pin

Virtual Condition

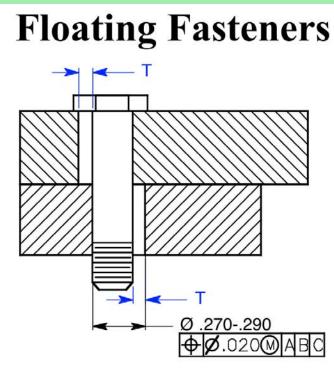
VC = MMC + GT

$$VC = 47 + 1 = 48$$

Resultant Condition

RC = LMC - GT - Bonus

$$RC = 45 - 1 - 2 = 42$$

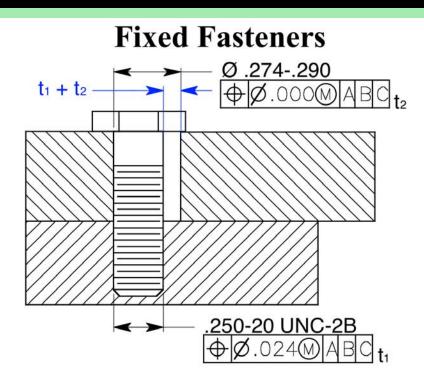

TECHNICAL TRAINING CONSULTANTS

Virtual and Resultant Conditions, Pin

VC/RC	48	48
RC/VC	+ 42	- 42
	2) 90	2) 6
	45	3

Equal Bilateral Tolerance (\pm) of part 45 ± 3

TECHNICAL TRAINING CONSULTANTS


The floating fastener formula is:

 $T = H - F \quad or \quad H = F + T$ T is the clearance hole MMC Location Tolerance H is the Clearance Hole MMC diameter F is the Fastener's MMC diameter, the nominal size

The floating fastener tolerance applies to each hole in each part.

H = F + T = .250 + .020 = .270

TECHNICAL TRAINING CONSULTANTS

The fixed fastener formula is:

 $t_1 + t_2 = H - F$ or $H = F + t_1 + t_2$

t₁ is the threaded hole Location Tolerance at MMC
t₂ is the clearance hole Location Tolerance at MMC
H is the Clearance Hole MMC diameter
F is the Fastener's MMC diameter, the nominal size

 $\mathbf{H} = .250 + .024 + .000 = .274$

TECHNICAL TRAINING CONSULTANTS